Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Year range
1.
Mem. Inst. Oswaldo Cruz ; 107(8): 1076-1079, Dec. 2012. ilus, tab
Article in English | LILACS | ID: lil-660661

ABSTRACT

To characterise the trypanosomatid-exclusive RNA-binding protein TcRBP19, we analysed the phenotypic changes caused by its overexpression. Although no evident changes were observed when TcRBP19 was ectopically expressed in epimastigotes, the metacyclogenesis process was affected. Notably, TcRBP19 overexpression also led to a decrease in the number of infected mammalian cells. These findings suggest that TcRBP19 may be involved in the life cycle progression of the Trypanosoma cruzi parasite.


Subject(s)
Animals , Protozoan Proteins/physiology , RNA-Binding Proteins/genetics , Trypanosoma cruzi/genetics , Gene Expression Regulation , Life Cycle Stages , RNA Processing, Post-Transcriptional/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/physiology , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/metabolism
2.
Mem. Inst. Oswaldo Cruz ; 107(6): 790-799, set. 2012. ilus, graf, tab
Article in English | LILACS | ID: lil-649496

ABSTRACT

Trypanosomes are parasitic protozoa in which gene expression is primarily controlled through the regulation of mRNA stability and translation. This post-transcriptional control is mediated by various families of RNA-binding proteins, including those with zinc finger CCCH motifs. CCCH zinc finger proteins have been shown to be essential to differentiation events in trypanosomatid parasites. Here, we functionally characterise TcZFP2 as a predicted post-transcriptional regulator of differentiation in Trypanosoma cruzi. This protein was detected in cell culture-derived amastigotes and trypomastigotes, but it was present in smaller amounts in metacyclic trypomastigote forms of T. cruzi. We use an optimised recombinant RNA immunopreciptation followed by microarray analysis assay to identify TcZFP2 target mRNAs. We further demonstrate that TcZFP2 binds an A-rich sequence in which the adenosine residue repeats are essential for high-affinity recognition. An analysis of the expression profiles of the genes encoding the TcZFP2-associated mRNAs throughout the parasite life cycle by microarray hybridisation showed that most of the associated mRNAs were upregulated in the metacyclic trypomastigote forms, also suggesting a role for TcZFP2 in metacyclic trypomastigote differentiation. Knockdown of the orthologous Trypanosoma brucei protein levels showed ZFP2 to be a positive regulator of specific target mRNA abundance.


Subject(s)
DNA-Binding Proteins/metabolism , Protozoan Proteins/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Trypanosoma cruzi/metabolism , Gene Expression Regulation, Developmental , RNA Stability , Trypanosoma cruzi/growth & development
3.
Mem. Inst. Oswaldo Cruz ; 107(6): 816-819, set. 2012. ilus, tab
Article in English | LILACS | ID: lil-649500

ABSTRACT

Small non-coding RNAs derived from transfer RNAs have been identified as a broadly conserved prokaryotic and eukaryotic response to stress. Their presence coincides with changes in developmental state associated with gene expression regulation. In the epimastigote form of Trypanosoma cruzi, tRNA fragments localize to posterior cytoplasmic granules. In the infective metacyclic form of the parasite, we found tRNA-derived fragments to be abundant and evenly distributed within the cytoplasm. The fragments were not associated with polysomes, suggesting that the tRNA-derived fragments may not be directly involved in translation control in metacyclics.


Subject(s)
Cytoplasmic Granules/genetics , RNA, Protozoan/analysis , RNA, Transfer/analysis , Trypanosoma cruzi/genetics , Cytoplasmic Granules/chemistry , RNA, Protozoan/genetics , RNA, Transfer/genetics
4.
Rev. bras. cir. cardiovasc ; 23(4): 467-473, out.-dez. 2008. ilus
Article in English, Portuguese | LILACS | ID: lil-506028

ABSTRACT

OBJETIVO: As células progenitoras endoteliais (CPE), caracterizadas pelo marcador CD133+, contribuem para a neovascularização, e o aumento no número dessas células pode ser uma ferramenta terapêutica promissora. O sangue de cordão umbilical humano contém um número significante de CPE, sugerindo a possibilidade do uso destas células para a revascularização de tecidos isquêmicos. O objetivo desse trabalho foi analisar a funcionalidade das células CD133+ diferenciadas in vitro. MÉTODOS: As células diferenciadas foram caracterizadas por citometria de fluxo; a expressão do mRNA de VEGF foi avaliada por RT-PCR e a funcionalidade, por meio de ensaios de formação de túbulos capilares. RESULTADOS: As células diferenciadas perderam os marcadores de CPE, mantiveram em níveis baixos os marcadores das linhagens hematopoética e monocíticas e aumentaram a expressão dos marcadores de células endoteliais adultas. As células diferenciadas apresentaram transcritos no mRNA de VEGF e mostraram-se capazes de formar túbulos capilares in vitro. CONCLUSÃO: As células CD133+ diferenciadas in vitro em células endoteliais demonstraram serem funcionalmente ativas, abrindo perspectiva para seu uso futuro em aplicações terapêuticas.


OBJECTIVE: Endothelial progenitor cells (EPC) caracterized by the CD133+ marker, contribute to the neovascularization. Increasing EPC number in vitro could be a promising therapeutic tool. Human umbilical cord blood maintains a significant number of EPC, suggesting the possibility to use these cells to induce the revascularization of ischemic tissues. The aim of this study was to analize the in vitro function of differentiated CD133+ cells. METHODS: Cells were characterized by flow cytometry, VEGF mRNA expression was evaluated by the RT-PCR analysis and the functionally by essays of capillary tubes formation. RESULTS: Differentiated cells lost EPC markers, maintained low levels of markers for hematopoietic and monocytic cell lines and increased the expression of adult endothelial cell markers. Differentiated cells expressed VEGF mRNA and were capable to induce in vitro capillary tubules formation. CONCLUSION: CD133+ cells differentiated into endothelial cells in vitro are functionally active initiating the possibility of their use in future therapeutic applications.


Subject(s)
Adolescent , Adult , Female , Humans , Young Adult , Antigens, CD , Cell Differentiation/physiology , Endothelial Cells/physiology , Fetal Blood/cytology , Glycoproteins , Neovascularization, Physiologic , Peptides , Stem Cells/physiology , Capillaries , Cells, Cultured , Flow Cytometry , Parturition , Reverse Transcriptase Polymerase Chain Reaction , RNA, Messenger/metabolism , Stem Cells/cytology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Young Adult
5.
Mem. Inst. Oswaldo Cruz ; 103(6): 598-601, Sept. 2008. ilus, tab
Article in English | LILACS | ID: lil-495736

ABSTRACT

Calpains are calcium-dependent cysteine proteinases found in all living organisms and are involved in diverse cellular processes. Calpain-like proteins have been reported after in silico analysis of the Tritryps genome and are believed to play important roles in cell functions of trypanosomatids. We describe the characterization of a member of this family, which is differentially expressed during the life-cycle of Trypanosoma cruzi.


Subject(s)
Animals , Calpain/biosynthesis , Life Cycle Stages/genetics , Protozoan Proteins/biosynthesis , Trypanosoma cruzi/growth & development , Blotting, Western , Calpain/genetics , Life Cycle Stages/physiology , Polymerase Chain Reaction , Protozoan Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Trypanosoma cruzi/genetics
SELECTION OF CITATIONS
SEARCH DETAIL